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Summary

We extend the methodology for family-based tests of
association and linkage to allow for both variation in
the phenotypes of subjects and incorporation of covari-
ates into general-score tests of association. We use stan-
dard association models for a phenotype and any num-
ber of predictors. We then construct a score statistic,
using likelihoods for the distribution of phenotype, given
genotype. The distribution of the score is computed as
a function of offspring genotypes, conditional on pa-
rental genotypes and trait values for offspring and par-
ents. This approach provides a natural extension of the
transmission/disequilibrium test to any phenotype and
to multiple genes or environmental factors and allows
the study of gene-gene and gene-environment interac-
tion. When the trait varies among subjects or when co-
variates are included in the association model, the score
statistic depends on one or more nuisance parameters.
We suggest two approaches for obtaining parameter es-
timates: (1) choosing the estimate that minimizes the
variance of the test statistic and (2) maximizing the sta-
tistic over a nuisance parameter and using a corrected
P value. We apply our methods to a sample of families
with attention-deficit/hyperactivity disorder and provide
examples of how covariates and gene-environment and
gene-gene interactions can be incorporated.

Introduction

Rubinstein et al. (1981) and Falk and Rubinstein (1987)
first suggested using the transmitted and nontransmitted
parental haplotypes as cases and controls in association
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tests using parent–affected-child trios. The transmitted
and nontransmitted alleles can also be considered to be
paired observations, leading to a McNemar’s test (Ter-
williger and Ott 1992), or what is commonly called the
“transmission/disequilibrium test” (TDT [Spielman et al.
1993]).

Many extensions and modifications of the TDT have
been developed. Here we build on a general approach
developed by Self et al. (1991) and Schaid (1996) for
parent–affected-child trio data. In the work of Self et al.
(1991), conditional logistic regression is used to model
P(genotypeFdisease). The affected child is the case and
is matched to three controls, corresponding to the other
three marker genotypes that the parents of the case could
have produced. Score tests are used to test for marker-
disease association. Schaid (1996) extends these methods
and proposes a general framework to test for association
with multiallelic markers, on the basis of log-risk models
for dichotomous phenotypes. Here, we extend this meth-
odology in several ways. First, we consider general as-
sociation models for an arbitrary phenotype Y and score
statistics based on likelihoods for the distribution of Y,
given genotype. These score statistics provide a natural
approach to incorporation of unaffected offspring or for
use of measured phenotypes. Although we use an as-
sociation model to obtain the score statistic, the distri-
bution of the score is computed as a function of offspring
genotypes, conditional on parental genotypes and
offspring trait values, so the method does not depend
on the model when no covariates are used. Second, we
use association models that may include environment-
al factors, as well as multiple genes. These models per-
mit us to study gene-environment and gene-gene in-
teractions.

One distinction between our procedure and previous
work discussed here is apparent when we apply the ad-
mixture correction. Self et al. (1991) and Schaid (1996)
model P(genotypeFdisease), thus applying the correction
for admixture before computing the score; we model
P(diseaseFgenotype) and apply the admixture correction
after computing the score. Although these two ap-
proaches are equivalent and, in specific cases, result in
the same tests, modeling P(diseaseFgenotype) rather than
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P(genotypeFdisease) gives us a natural way to model
continuous phenotypes or both unaffected and affected
offspring for dichotomous traits, and allows the seamless
inclusion of covariates and gene-covariate interactions.
Another important distinction between our work and
that of Schaid (1996) is that Schaid considered settings
with no nuisance parameters. When the trait (Y) varies
among subjects in the sample, either (a) because we have
both affected and unaffected subjects or a quantitative
phenotype or (b) when we introduce covariates, the score
statistics involve nuisance parameters, which cannot al-
ways be estimated from the data (see Rabinowitz 1997).
When adequate estimates of nuisance parameters are not
available, we suggest one approach to specification of
score statistics that is based on optimizing the x2 statistic
(Davies 1977) and another that is based on minimizing
the variance of the score.

We illustrate the methods with a sample of 43 nuclear
families, each having at least one member with attention-
deficit/hyperactivity disorder (ADHD), and a total of 44
affected and 34 unaffected children. We examine asso-
ciations and interactions between ADHD and the do-
pamine D4 (DRD4) and dopamine transporter (DAT)
genes, using sex and parental affection status as covari-
ates. For the ADHD phenotype, both a dichotomous
affection status and a measured phenotype score are
used. For tests without covariates, we compare results
by using population and sample estimates of a single
nuisance parameter and the optimized x2 statistics with
the P-value correction described by Davies (1977).

Methods

Defining the test statistic involves three steps. First,
we describe an association model, using standard gen-
eralized linear-regression models (McCullagh and
Nelder 1989), which relate the mean phenotype to the
marker or gene being tested and, possibly, to other covar-
iates. Second, we construct a likelihood, using exponen-
tial family models, and use the likelihood to obtain a
score statistic. Finally, the admixture adjustment is ac-
complished by calculating the mean and the variance of
the score statistic by use of the distribution of genotype
in offspring, conditional on parental genotypes and on
offspring phenotypes. In this section, we define each of
these three steps in sequence, then show how covariates,
gene-environment interaction, and gene-gene interac-
tions may be tested.

First, we introduce some notation. We assume that
there are N independent families indexed by i, each hav-
ing ni offspring, indexed by . Let Yij denotej = 1, ) ,ni

the phenotype of the jth offspring in the ith family, and
let mij denote .E(Y )ij

Models for the Association

There are many ways to characterize the effect of a
gene on phenotype; three traditional genetic models are
recessive, dominant, and additive. An advantage of these
models is that they each yield a 1-df test, or, equivalently,
that they each can be coded in a regression model that
uses a single variable. The additive model is the basis
for both the TDT (Spielman et al. 1993) and the sibling
TDT (S-TDT [Spielman and Ewens 1998]) and will be
used in our examples and application. Schaid and Som-
mer (1994) propose transmission statistics based on re-
cessive and dominant models. Sham and Curtis (1995)
consider models for multiallelic markers or genes, and
Schaid (1996) proposes a general framework to test for
association with multiallelic markers, on the basis of log-
risk models for dichotomous phenotypes. For the pur-
poses of this study, we will consider biallelic markers (or
testing a single allele versus all others in a multiallelic
setting), but the general approach extends straightfor-
wardly when the genotype is coded by use of more than
one variable.

Let Xij denote the variable that codes for genotype.
Assume that we are interested in testing a particular
allele, labeled “A.” Then, for the additive model, Xij

counts the number of A alleles in the ijth individual. For
the recessive model, if the ijth individual has ge-X = 1ij

notype AA and is 0 otherwise, etc. The generalized linear
model assumes a link function, say Lij, which is some
transformation of mij, such that

L = b � b X . (1)ij 0 1 ij

With dichotomous phenotypes, the natural link func-
tion is the logit L = logit (m ) = log [m / (1 � m )] =ij ij ij ij

, where is the disease prevalence.b � b X m = E(Y )0 1 ij ij ij

For continuous responses, the natural link is the identity,
meaning that and that the association model isL = mij ij

simply the usual linear-regression model: L = m =ij ij

. As discussed in the next section, these modelsb � b X0 1 ij

can be made more complex by adding additional terms
for covariates and other genes.

Score Statistics

A general approach that has been used to test asso-
ciation models is the derivation of the conditional dis-
tribution of offspring genotype, given their phenotype
and parental genotypes; this is used to form a likelihood.
Schaid and Sommer (1994) use this approach to extend
the TDT to recessive and dominant models, and Schaid
(1996) develops a very general likelihood approach, us-
ing a log-risk model. These investigators use affected
offspring only and derive the likelihood associated with
the conditional distribution of offspring genotype, given
parental genotype and offspring phenotype. Parents can
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have any number of offspring; all offspring with known
phenotype and genotype can be included in the likeli-
hood. Unlike Schaid and Sommer (1994) and Schaid
(1996), we compute the prospective likelihood of phe-
notype Yij, conditioning on genotype Xij to obtain the
score statistic; sibs are treated as independent, given ge-
notype. The resulting likelihood is used to obtain the
score statistic, and the adjustment for admixture is done
as the final step, by computation of the distribution of
the score statistic, by use of the genotype distribution of
offspring, described below.

By use of exponential family models, Bernoulli for
dichotomous phenotypes and normal for continuous
phenotypes, the log likelihood for both models can be
written as , where islog L(b ,b ) = S [Y L � a(L )] a(L )0 1 ij ij ij ij ij

a function of Lij, with the property that �a(L )/�L =ij ij

when Lij is the canonical link function. To test them ij

null hypothesis of no association, we obtain the first
derivative of the log likelihood with respect to b1 and
set b1 equal to 0 in the resulting equation. The first
derivative of the log likelihood with respect to b1

is . Setting yields[(� log L) /�b ] = S X (Y � m ) b = 01 ij ij ij ij 1

the score statistic S: , where, underS = S X (Y � m)ij ij ij

, m is constant for all subjects. In this setting,H : b = 00 1

the statistic will be the same for any link function. Notice
that, in the case of dichotomous phenotypes, the use of
only affected individuals means that for all ij. InY = 1ij

this case, acts as a multiplicative con-(Y � m) = (1 � m)ij

stant and can be ignored, since it will vanish in the nor-
malization of the test statistic. The resulting statistic,

is identical to that used in the TDT and theS = S X ,ij ij

S-TDT.
In general, however, S depends on the nuisance pa-

rameter m. Since m is not a function of the genotype,
misspecification of m will not bias the test, but a good
choice of m can improve test efficiency. We discuss this
in some detail in the examples.

Distribution of the Test Statistic

We evaluate the distribution of the test statistic by
using the appropriate permutation distributions for the
offspring allele values as described by Kaplan et al.
(1997) and Rabinowitz and Laird (in press). When all
parental marker data are known, under the null hy-
pothesis of no linkage— —the permutation1H : v =0 2

distribution of alleles in the offspring follows the usual
Mendelian laws, conditional on known founder alleles.
This case is particularly simple, since it implies that all
offspring in a family are independent, conditional on the
genotypes of the parents. The algorithm for nuclear fam-
ilies is described by Kaplan et al. (1997). Rabinowitz
and Laird (in press) describe the algorithm for the case
in which parental genotype data are missing.

There are two ways that one can use the permutation

distribution. If the score statistic is sufficiently simple
and the number of pedigrees is sufficiently large, we can
use the distribution to compute the mean and variance
of each pedigree’s contribution to the statistic. Then an
approximate Z score is .�Z = {S [S � E(S )]} / S var(S )i i i i i

In the next section, we discuss vectors of statistics. In
this case, for score statistics, we construct anM � 2
asymptotic x2 statistic with M df, which takes the form

, where S is the vector of2 T �1x = [S � E(S)] V [S � E(S)]
score statistics summed over all families and E(S) and

are its mean and variance, respectively, com-V = var(S)
puted under the permutation distribution. Alternatively,
we may use the Monte Carlo method to evaluate the
entire null distribution of the test statistic and thereby
obtain exact P values, as do Kaplan et al. (1997).

Covariates and Interactions

We use the term “covariate” to encompass not only
traditional environmental exposures but also the geno-
type at a gene known to affect the trait, provided that
the gene is not linked to the locus being tested. We also
assume that the covariate(s) are not affected by any gene
linked to the tested locus. Because the adjustment for
admixture also removes any bias due to confounding, it
is not necessary to use covariates in the association
model, but doing so may increase efficiency if the covari-
ate is strongly predictive of phenotype. In principle, in-
cluding a covariate as an additional term—say b2Zij,
where Zij is the covariate value for the ijth subject—in
the basic regression model (1) can easily do this. In the
score function, then, m becomes mij, where now the as-
sociated link function under H0 is

L = b � b Z . (2)ij 0 2 ij

Using a covariate requires estimates of b0 and b2, which
are used to calculate the residuals used in the(Y � m )ij ij

score function.
Gene-environment interactions.—The usual statistical

approach to test for an interaction between two variables
Xij and Zij is to specify an association model, such as

L = b � b X � b Z � b X Z , (3)ij 0 1 ij 2 ij 3 ij ij

and to test the interaction by setting . In this set-b = 03

ting, however, the reference distribution of the test sta-
tistic under H0 is always computed under the assumption
of no linkage and no linkage disequilibrium, which im-
plies that as well. Therefore, the testable null hy-b = 01

pothesis is . One can use a vector of testH : b = b = 00 1 3

statistics, obtained by differentiating the log likelihood
with respect to both b1 and b3, andS = S X (Y � m )1 ij ij ij ij

, where, under H0, mij is given asS = S X Z (Y � m )2 ij ij ij ij ij

the antilink of equation (2). Using the vector of score
statistics will yield a 2-df test. This approach is not sen-
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sitive to the way in which the covariate Zij is coded,
since replacing Zij by , where a and b are ar-(a � bZ )ij

bitrary constants, will not change the value of the test
statistic. A drawback of this approach is that global test
statistics are not sensitive to particular alternatives. Fur-
thermore, rejection of H0: no linkage and no linkage
disequilibrium may not imply interaction; if the test has
sufficient power, the test should reject even if there is no
interaction, as long as there is a main effect.

An alternative is to construct 1-df tests by use of just
S2. Such tests are valid, since they always have the re-
quired distribution under H0, but now the coding of Zij

is critical to the interpretation of the result. For example,
suppose that the covariate is a dichotomous variable,
the presence or absence of some environmental expo-
sure. Then setting if exposed and 0 if not exposedZ = 1ij

(or if exposure is missing) yields a 1-df test that follows
the reference distribution, unless the marker is linked to
and in linkage disequilibrium with a gene influencing the
trait in exposed individuals. In this case, individuals with

do not contribute to the statistic. Reversing theZ = 0ij

coding to if unexposed and 0 otherwise yields aZ = 1ij

test statistic that follows the reference distribution, un-
less the marker is linked to a gene influencing the trait
among unexposed subjects. These two tests are inde-
pendent, since they use different subjects, but they do
not provide a direct test of interaction. Using the coding
1 or �1 for, respectively, exposed or unexposed status,
yields a 1-df test that contrasts the association among
exposed with that among unexposed. The power of this
test, however, depends heavily on choosing the correct
association model.

Gene-gene interactions.—If Zij is not an established
risk factor for the phenotype but is a second locus un-
linked to the locus being tested, we can use model (3)
to test the effects of both genes simultaneously. The null
hypothesis is , since the reference distri-b = b = b = 01 2 3

bution of the test statistic under H0 is computed under
the assumption of no linkage and no linkage disequilib-
rium for either gene. The vector of test statistics will
include a third statistic, , andS = S Z (Y � m ) m = m3 ij ij ij ij ij

is a constant given by the antilink of . The ref-L = bij 0

erence distribution is computed by treating Xij and Zij

as random and independent. Using the vector of score
statistics will yield a 3-df test. Note that a main ef-
fects–only model can be tested by use of S1 and S3 only.

Examples of the General Approach

We now use the general approach to derive some sta-
tistics already in the literature and to derive some new
statistics. For simplicity of presentation, we assume that
only one allele, denoted by “A,” is of interest and that
Xij is the number of A alleles in the jth offspring of the
ith family. Under the null hypothesis of no linkage and

no linkage disequilibrium, when the genotypes of both
parents are known and we use the additive association
model, all offspring are independent, and the mean and
variance of Xij for all offspring are AAE(X ) = N �ij i

and , where and are theA A A AAN /2 var(X ) = N /4 N Ni ij i i i

number of parents who are, respectively, heterozygous
and homozygous for allele A in the ith family.

The TDT with affected and unaffected offspring.—The
TDT was proposed to test linkage via association of a
particular allele A with disease, by use of affected off-
spring and their parents, and can be derived as a score
test (e.g., see Schaid 1996). When both affected and
unaffected offspring are used and the phenotype is coded

if affected and 0 if unaffected, the score statisticY = 1ij

can be written as ,S = S X (Y � m) = (1 � m)S � mSij ij ij a u

where Sa is the total number of A alleles transmitted to
the affected offspring and Su is the same for the unaf-
fected offspring. Note that transmissions from homo-
zygous parents contribute nothing to the statistic, since
their contribution to Xij always equals their contribution
to and their contribution to . SettingE(X ) var(X ) = 0ij ij

means that and only transmissions to af-m = 0 S = Sa

fected offspring are counted. When the disease is rare,
, and most of the linkage disequilibrium can bem ≈ 0

expected to occur in the genotypes of affected individ-
uals, since the allele frequency among unaffected indi-
viduals will be close to that of the population. With more
common diseases, including the unaffected individuals
by taking can increase the power of the test.0 ! m ! 1

When the genotypes of both parents are known, it is
straightforward to show that, under H0: no linkage and
no association, andS � E(S ) = [(b � c ) /2] var(S ) =a a a a a

, where ba and ca are, respectively, the num-[(b � c ) /4]a a

ber of times that A is transmitted and not transmitted
from heterozygous parents to the affected offspring, so

is the total number of transmissions to affectedb � ca a

individuals scored. Analogous calculations can be made
for the unaffected individuals. Hence, under H0,

1
S � E(S) = [(1 � m)(b � c ) � m(b � c )]a a u u2

and

1 2 2var(S) = [(1 � m) (b � c ) � m (b � c )] . (5)a a u u4

Thus, the statistic for affected and unaffected offspring
is

2[(1 � m)(b � c ) � m(b � c )]a a u u2x = .au 2 2(1 � m) (b � c ) � m (b � c )a a u u

This 1-df x2 statistic can be viewed as taking a weighted
average of the contributions from the affected and un-
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affected sibs. When , only affected individuals arem = 0
used, and is the TDT of Spielman et al. (1993). When2xau

m is set to the population prevalence of the disease,
is identical to the Tsib statistic derived by Whittaker2xau

and Lewis (1998) as the most powerful test under a
multiplicative-genotype relative-risk model for disease.

Under the alternative hypothesis, note that the seg-
regation proportions for affected and unaffected
children,

p = P(transmit A toa

affected childd heterozygote parent)

and

p = P(transmit A tou

unaffected childd heterozygote parent)

should be on different sides of and, thus, that1 p �a2

and will have different signs. With a rare disease1 1p �u2 2

allele in linkage disequilibrium with A, one would expect
the magnitude of to be substantially greater than1p �a 2

that of . Hence, including genotyped, unaffected1p �u 2

offspring in an association test will likely increase power
substantially only when the disease allele is common or
when the total number of transmissions scored to un-
affected individuals is much greater than the number
scored to affected individuals.

In theory, m is the prevalence of disease in the popu-
lation. If we have both affected and unaffected offspring,
we can estimate m with the proportion affected in the
sample, but, with selected samples, it may be more ap-
propriate to use an externally derived estimate of disease
prevalence. An alternative approach is to minimize
var(S) under H0, as a function of m. By use of the equa-
tion for var(S) given in equation (5), it is straightforward
to show that, under H0, var(S) is minimized by setting

where and .m = [n / (n � n )] , n = b � c n = b � ca a u a a a u u u

This is a sample estimate of the prevalence, where off-
spring are weighted by the number of heterozygous par-
ents. We call this the “heterozygous weighted-sample
estimate” (HWSE).

Yet another approach is to maximize the statistic over
and then adjust the P value of the test to0 � m � 1

reflect the maximization. Davies’s (1977) method of ad-
justment provides an upper bound on the significance
level of the test. To get the upper bound, we first identify
a statistic Z(m) that is dependent on the weight m and
that has a standard normal distribution under H0. In our
case, . The upper bound is2�Z(m) = xau

P sup FZ(m)F 1 x[ ]
0�m�1

1 2 1exp (� x )2
1/2[ ]�2 F(�x) � �r (m) dm ,{ }� 112p 0

where, under H0, and2 2r (m) = {[� r(m ,m )] /�m }11 1 2 1 Fm =m1 2

r(m1,m2) is the covariance between Z(m1) and Z(m2) (Da-
vies 1977). Writing and , one can2 2var(S ) = j var(S ) = ja a u u

show that and2 2 2 2 2 2 2r (m) = {(�j j ) /[(1 � m) j � m j ] }11 a u a u

that

1 1
j j pa u1/2[ ]�r (m) dm = dm = .� 11 � 2 2 2 2(1 � m) j � m j 20 0 a u

Therefore, the upper bound for a two-sided test is

1 1 2P sup FZ(m)F 1 x � 2 F(�x) � exp � x . (6)( )[ ]( ) 4 20�m�1

It is also possible to compute an upper bound for the
statistic for quantitative traits. However, that bound is
more difficult to compute and depends on the trait
values.

Segregation-distortion tests.— differs from the 1-df2xau

x2 test for segregation distortion,“ ,” proposed by2xs

Spielman et al. (1993). is a Pearson x2 test of inde-2xs

pendence and is designed to test , whereasH : p = p0 a u

is designed to test . If we choose m to12x H : p = p =au 0 a u 2

be , then also has expectationm̂ = n /(n � n ) S � E(S)0 a a u

0 under the segregation-distortion hypothesis .p = pa u

However, as a general test of segregation distortion,
is conservative, since the variance is calculated under2xau

the hypothesis that the common p equals . We can1
2

easily derive an alternative to to test , us-2x H : p = ps 0 a u

ing the score statistic S but evaluating its distribution
under a different null hypothesis. To find E(S) and var(S)
under , note that, for a heterozygous parent,H : p = p0 a u

, and , where Tij is 1 or 0,E(T ) = p var(T ) = p(1 � p)ij ij

depending on whether A is or is not transmitted to the
child by a heterozygous parent, and where p is the com-
mon segregation proportion. Under allH : p = p ,0 a u

transmissions are independent, and p can be estimated,
from all of the offspring transmissions, as p̂ = (b �a

. The test statistic is thereforeb )/(n � n )u a u

2ˆ ˆ[(1 � m)(b � n p) � m(b � n p)]a a u u2x = .sd 2 2ˆ ˆp(1 � p)[(1 � m) n � m n ]a u

Here, if we substitute for m, then is2m̂ = n /(n � n ) x0 a a u sd

identical to .2xs

TDT for quantitative traits.—Rabinowitz (1997) pro-
posed a score test of H0: no linkage and no linkage
disequilibrium for quantitative traits given by
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—� (Y � Y)(X � E(X )ij ij ij ij
Z = .

—� 2� (Y � Y) var(X )ij ij ij

Here again, it is straightforward to minimize the vari-
ance of the score test under H0 as a function of m, and
the resulting statistic is the same as that proposed by
Rabinowitz, except that is replaced by the HWSE—

—
Y

that is, the sample average Yij—weighting each offspring
by the number of heterozygous parents.

Inclusion of covariates.—As discussed in the Methods
section, we may be able to increase efficiency when test-
ing an allele for association, by including in our model
one or more covariates as main effects. In this case, m

is replaced by mij, which depends on the regression model
for the mean as a function of covariates. For example,
if the covariate Zij is a dichotomous indicator of some
environmental exposure, then there will be two values
for mij—the prevalence of the disorder, or the mean phe-
notype—in the presence and absence of the exposure.
Heterozygote weighted-sample averages can be used to
estimate the two values of mij by use of the exposed and
unexposed groups. Population parameters can be used
when available, and, in principle, Davies’s (1977) ap-
proach could also be generalized to more than one
parameter.

Testing strategies and interpretation for gene-environ-
ment and gene-gene interaction tests.—One of the draw-
backs of the global 2-df test that includes a gene-covari-
ate interaction is that it is not sensitive to particular
alternatives. The global 2-df test provides the most in-
formation in instances in which the 1-df test of the gene’s
main effect does not reject H0 but the 2-df test does.
This case strongly suggests that an interaction is present.

If the 1-df main-effect test rejects H0 and there is suf-
ficient power, then the 2-df test that includes the inter-
action will reject it as well. In this case, we have not
gained much information about gene-covariate inter-
actions. As an ad hoc procedure, it is logical to compare
the P values of the 1-df main-effect–only and 2-df in-
teraction test. If there is no interaction, we would expect
the P value of the 2-df test to be similar to or greater
than the P value for the 1-df test; if an interaction exists,
we would expect the P value to be smaller for the 2-df
test. Alternatively, one might look at the test based on
S2 alone, for an appropriate choice of Z.

Application to Families with ADHD

Researchers have examined candidate genes in do-
pamine pathways because animal models, theoretical
considerations, and the effectiveness of stimulant treat-
ment implicate dopaminergic dysfunction in the path-
ophysiology of ADHD (Faraone and Biederman 1998).

A population-based association study implicated the A1
allele of the dopamine D2–receptor gene (Comings et al.
1991) for ADHD, but no attempts to replicate this have
been reported. Cook et al. (1995) reported an associa-
tion between ADHD and the 480-bp allele of the DAT
gene (DAT-480), using a family-based association study.
This finding was replicated in family-based studies of
ADHD by Gill et al. (1997), Waldman et al. (1998), and
Daly et al. (1999) but not in other studies (Asherson et
al. 1998; Poulton et al. 1998). Several groups have re-
ported an association between ADHD and the seven-
repeat allele of DRD4 (DRD4-7 [LaHoste et al. 1996;
Rowe et al. 1998; Smalley et al. 1998; Swanson et al.
1998; Faraone et al. 1999; Comings et al. 1999]), but
other groups could not replicate this association (Ash-
erson et al. 1998; Castellanos et al. 1998; Daly et al.
1998). The positive DRD4 results have generated much
interest, because the implicated allele is known to me-
diate a blunted response to dopamine (Asghari et al.
1995).

As part of an ongoing study, we recruited nuclear fam-
ilies in which at least one family member (child or par-
ent) was believed to have ADHD. All individuals were
assessed for DSM-IV ADHD, and DNA was genotyped
for the DRD4 and DAT genes. Sixty parent-child trios
(33 affected and 27 unaffected children, in 35 nuclear
families) were genotyped for DAT, and an additional 12
trios were genotyped for DRD4, resulting in a total of
72 trios, with 42 affected and 30 unaffected children,
in 39 nuclear families. For DAT-480, a total of 17 un-
affected children had at least one heterozygous parent;
2 of these 17 had two heterozygous parents. A total of
21 affected children had at least one heterozygous par-
ent; 6 of these 21 had a second heterozygous parent.
For DRD4-7, 13 unaffected children had at least one
heterozygous parent; and 2 of these 13 had two hetero-
zygous parents. A total of 17 affected children had at
least one heterozygous parent; 4 of these 17 had two
heterozygous parents. For all analyses, we treated each
gene as biallelic, testing DRD4-7 against all other DRD4
alleles and testing DAT-480 against all other DAT alleles.

In table 1, we summarize the results of our analyses
for each allele separately, without incorporating covari-
ates into the weights. For each allele, we display the P
values for statistics computed by use of six different val-
ues for the weight (nuisance parameter) m. Weight m =

corresponds to the traditional TDT test of Spielman0
et al. (1993), which uses only affected offspring. Weights

and correspond to the range of ADHDm = .05 m = .10
prevalence rates reported in the literature. The HWSE
is the sample estimate of the prevalence, in which off-
spring are weighted by the number of heterozygous par-
ents. This is the m estimate, which minimizes var(S). Set-
ting corresponds to the weight m at which them = max

statistic is maximized; the P value is adjusted by use2xau
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Table 1

Tests of Association between ADHD Status and DAT-480 or
DRD4-7 Alleles

ALLELE

Na

m Pba ca bu cu

DAT-480 17 10 6 13 .00 .18
.05 .16
.10 .14
.59 (HWSE) .04
.59 (max) .04 (.09)b

1.00 .11

DRD4-7 15 6 5 10 .00 .05
.05 .04
.10 .04
.44 (max) .02 (.05)b

.58 (HWSE) .02
1.00 .20

a ba and ca = number of transmissions and nontransmissions from
heterozygous parents to affected offspring; bu and cu = same for
unaffected offspring.

b Corrected P value for statistic, maximized over by0 � m � 1
use of Davies’s (1977) method.

Table 2

Joint Tests of Association between ADHD
Status and DAT-480 and DRD4-7 Alleles

Model and m P

Main effects only (2-df):
.00 .06
.05 .05
.10 .04
.59 .01
1.00 .12

Main effects and interaction (3-df):
.00 .07
.05 .06
.10 .05
.59 .01
1.00 .20

of the method of Davies (1977), described earlier. Be-
cause we are testing candidate loci for linkage or asso-
ciation, a type 1 error rate of is appropriate. Bya = .05
use of and Davies’s (1977) correction, thea = .05
DRD4-7 allele is significantly associated with ADHD in
our sample. Only when affected individuals are com-
pletely excluded ( ) is the test not significant; anm = 1
unaffected individuals–only test is expected to have low
power for many underlying models. The association
with the DAT-480 allele is not significant when popu-
lation prevalence is used as the weight m, but the Davies
P value is small enough (.09) that further study with
larger samples is warranted. In both cases, use of the
HWSE weight gives an unadjusted P value close to the
unadjusted P value for the maximized statistic.

A main interest of investigators is looking at gene-
gene interaction. Table 2 shows the results of tests in-
volving the alleles at the DAT and DRD4 loci simulta-
neously. The first model has main effects only (2-df test)
and tests for effects of both genes. Results for five dif-
ferent weights are displayed. The weight .59 was chosen
so that comparisons to the tests in table 1 could be made.
Given the single-locus results (table 1), it is not surprising
that there is some evidence for association. Whether the
two-locus model provides more evidence for association
than do the single-locus models depends on the weight.
At , the P value for the main-effects model ism = .59
lower than that for either of the two single-locus models.
This is not the case for either the affected individu-
als–only ( ) analyses or the population-prevalencem = 0
( or .10) weights. The second model incorporatesm = .05
an interaction effect for the two alleles as well. These

tests do not show stronger evidence for association than
do the main-effects-model tests.

Because the rates of ADHD diagnosis are quite dif-
ferent in males and females, sex may be an important
covariate to consider when one is testing for associa-
tions. Parental affection status may also influence as-
sociation. Table 3 is a summary of tests of the alleles
with these covariates. In all cases, the HWSE of the
nuisance parameter(s) was used. Comparing the P values
of tests of the allele alone, using the sample estimates of
m in table 1, with the P values of the tests in table 3, we
see that the inclusion of sex or number of affected par-
ents as a main effect in the model does not change the
significance level of the tests for DAT-480. Hence, pro-
viding different weights based on sex or parental affec-
tion status does not substantively change the evidence
for this tentative association. The lack of change may
be due to the fact that the HWSE weights used for these
tests were quite similar: for males andm = .5454 m =m f

for females, for children with no affected.6923 m = .500

parents and for children with at least one af-m = .601

fected parent. There is no evidence of DAT-covariate
interactions under the model that we employed: the
global 2-df tests that include interaction terms do not
have lower P values than do the tests that use models
without the interaction terms. However, when the sam-
ple is subdivided into males and females, we find that
it is only the females who give evidence for an association
with DAT-480, thus suggesting a sex–DAT-480 inter-
action. Since the test restricted to females is based on
only 13 transmissions, these results need replication in
larger samples. Parental affection status seems to con-
tribute little to the analysis. Offspring in families with
an affected parent appear to show somewhat more ev-
idence of association than do offspring in families with-
out an affected parent, but there are only six transmis-
sions scored in families with no affected parents.

Similarly, for DRD4-7, inclusion of either covariate as
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Table 3

Tests of Association for DAT-480 and DRD4-7 Alleles, with covariates for ADHD Phenotype and
Quantitative Sum of Summary-Scores Pheonotype (QT)

TERMS IN MODELa

Nb

COEFFICIENT

TESTED df
ADHD

P
QT
Pba ca bu cu

DAT,sex 17 10 6 13 DAT 1 .03 .06
DAT,sex,DAT*sex 17 10 6 13 DAT,DAT*sex 2 .04 .16
DAT (males only) 11 7 6 9 DAT 1 .23 .12
DAT (females only) 6 3 0 4 DAT 1 .03 .26
DAT,paraff 17 10 6 13 DAT 1 .04 .06
DAT,paraff,DAT*paraff 17 10 6 13 DAT,DAT*paraff 2 .11 .13
DAT (paraff=1) 15 9 5 11 DAT 1 .05 .08
DAT (paraff=0) 2 1 1 2 DAT 1 .41 .34
DRD4,sex 15 6 5 10 DRD4 1 .03 .34
DRD4,sex,DRD4*sex 15 6 5 10 DRD4,DRD4*sex 2 .03 .44
DRD4 (males only) 9 3 5 3 DRD4 1 .58 .23
DRD4 (females only) 6 3 0 7 DRD4 1 .01 .68
DRD4,paraff 15 6 5 10 DRD4 1 .08 .46
DRD4,paraff,DRD4*paraff 15 6 5 10 DRD4,DRD4*paraff 2 .16 .47
DRD4 (paraff=1) 10 3 3 2 DRD4 1 .52 .92
DRD4 (paraff=0) 5 3 2 8 DRD4 1 .07 .22

a sex = sex of individual, paraff = indicator for more than one parent affected with ADHD.
b Variables are as in table 1.

a main effect does not improve the evidence for asso-
ciation by decreasing the P value, and there is no evi-
dence of interaction effects by use of the global 2-df test.
For this allele, as for DAT-480, the HWSE weights for
males and females were similar: for malesm = .6000m

and for females. For parental affection status,m = .5625f

the weights differed more: for children withm = .44440

no affected parents and for children with atm = .72221

least one affected parent. Interestingly, in the subdivided
sample, it is again only the 17 transmissions to females
that produce evidence for an association with DRD4-7,
again suggesting an interaction with sex.

Parental affection status seems to contribute little to
the analysis of DRD4-7. There is some evidence for as-
sociation with DRD4-7 among offspring with no af-
fected parents, but there is none among offspring with
affected parents.

Quantitative Phenotype

In addition to DSM-IV ADHD phenotypes, we also
have hyperactivity-impulsivity and inattention summary
scores, which provide a quantitative phenotype related
to the ADHD-affection-status phenotype. To illustrate
the use of a quantitative phenotype by our methods, we
repeated our analyses, using as the phenotype (Yij) the
sum of the hyperactivity-impulsivity and inattention
summary scores. As before, HWSEs of the nuisance pa-
rameters were used, and the same test statistics were
employed to test for associations. The last column of
table 3 is a summary of the results. Interestingly, there
is no evidence for a DRD4-7 association with this phe-

notype. Evidence for a DAT-480 association is slightly
weaker than that for the binary ADHD phenotype.

Discussion

Our approach shares some features of the Monte
Carlo methods proposed by Kaplan et al. (1997) and
Martin et al. (1997) and of the score-test methods pro-
posed by Self et al. (1991) and Schaid (1996). Kaplan
et al. (1997) and Martin et al. (1997) show how the P
value of any of several test statistics can be evaluated
by Monte Carlo sampling from the distribution of the
transmitted alleles, conditional on parental genotypes at
the marker. Self et al. (1991) and Schaid (1996) use
conditional-likelihood methods to compute score statis-
tics for standard association models. All of these ap-
proaches use only affected sibs with genotyped parents.
One distinction between our procedure and that of
Schaid (1996) is in our application of the admixture
correction. Schaid (1996) applies the correction before
computing the score, whereas we do it afterward. Al-
though these two approaches are equivalent and, in spe-
cific cases, result in the same tests, choosing to model
P(diseaseFgenotype) rather than P(genotypeFdisease)
has several advantages. First, this formulation provides
an easy way to include siblings of all phenotypes—both
affected and unaffected siblings for binary traits, or any
quantitative phenotype—into a test statistic. Second, it
allows us to seamlessly include relevant environmental
(or genetic) covariates, reducing variability and poten-
tially increasing the efficiency of tests. Third, derivation
of the mean and variance of score statistics by use of
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the conditional distributions of genotype under H0 are
generally much simpler than derivations of the condi-
tional likelihoods.

Several investigators have recently described family-
based tests of association for quantitative traits. Allison’s
(1997) TDTQ5 is an F-ratio test that also allows the in-
corporation of covariates but that makes assumptions
about the trait distribution. Clayton and Jones (1999)
describe an extension of the Self et al. (1991) and Schaid
(1996) score-test approach for marker haplotypes that
uses either discrete or quantitative traits. Their focus is
on multiallelic tests, and they do not consider the use of
covariates or unaffected individuals in tests of discrete
traits. Fulker et al. (1999) extend maximum-likelihood
variance-components procedures to allow a test for al-
lelic association, as well as for linkage by use of sib-pair
data, allowing the incorporation of covariates and in-
teractions.

We have used standard logistic and linear association
models for binary and quantitative traits, but the general
approach can be extended to time-until-onset, categor-
ical, ordinal, or multivariate phenotypes. Treating the
phenotype as outcome allows for flexibility in modeling,
but, because we treat it as fixed in the computation of
the distribution of the test statistic, the approach is valid
for any type of ascertainment scheme that depends on
the phenotypes of any of the family members. Further-
more, because we compute the distribution of the test
statistic under the correct conditional distribution of the
transmitted alleles, the tests are unbiased even when the
associated model or phenotype distribution is misspe-
cified and the population is heterogeneous.

When there is variation in the phenotype Yij, or when
covariates are included in the model, our approach re-
quires the specification of nuisance parameters. Misspe-
cifying the parameters has no effect on the validity of
the statistic and, within a reasonable range, should have
little effect on the power. For our data example, speci-
fying the nuisance parameter as the proportion of pa-
rental transmissions to affected sibs, relative to all trans-
missions, worked well. This is not surprising, since the
HWSE of prevalence minimizes the variance of the test
statistic. Intuitively, this estimate seems to be reasonable
if all sibs in each family are phenotyped: if a high pro-
portion are affected, then we expect unaffected individ-
uals to carry information about linkage and association.
If a low proportion of offspring are affected, then we
expect affected individuals to carry the majority of link-
age information. For applications with only one nui-
sance parameter, maximizing the test statistic over the
parameter and then adjusting the P value of the test
appropriately is also a reasonable choice. Future work
will examine the power of this strategy, compared with
the use of sample and population estimates. In our data
example, the P values derived from the sample-based

estimates and the uncorrected P values for the maxi-
mized statistic were similar.

We provide an alternative derivation of the Tsib sta-
tistic derived by Whittaker and Lewis (1998), in which
the unaffected individuals are weighted by the popula-
tion prevalence. Tsib was derived as the most powerful
test under a multiplicative-genotype relative-risk model.
Our derivation can be generalized to other types of phe-
notypes and association models.

The application to families with ADHD illustrates
how the methods may be used to investigate associations
by use of data from both affected and unaffected off-
spring. In this data set, including the unaffected offspring
with an appropriate weighting scheme increased the ev-
idence for association. Whether this is true in general,
and whether the typing of unaffected individuals is ef-
ficient, is likely to depend on the underlying disease
model and ascertainment scheme. Whittaker and Lewis
(1998) found that unaffected children contribute very
little additional information for the simple genetic mod-
els and ascertainment scheme that they considered.
Whether this is a more general result—for example, for
diseases with higher prevalence and alleles with higher
frequency or for models that involve a shared environ-
mental and genetic risk beyond the allele being tested—is
yet to be determined.
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